Formulae for calculating the instantaneous rate of natural mortality of anirals from its surrogates
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Abstract Interspecific relationships between the instantaneous rate of natural mortality of fish in a natural population
and its surrogates are useful for studies of their population dynamics. In this paper, I derive interspecific models for the
instantaneous rate of natural mortality of animals in a natyral population as 2 function of its age-, length- and
mass-based surrogates, demonstrate their relationships with existing interspecific models, and fit them into data from
three groups of animals, At equilibrium and for the most stable distribution of individuals of a population, the sam of
the population’s instantaneous rales of natural and fishing mortalities is in inverse proportion 10 the population’s
age-based surrogates (e.g., mean age, longevity, age at maturity and observed maximum age} and increases linearly

with the rate of its individual’s growth in length or mass.

1.1 Inmoduction

The instantaneous rate of natural mortality is a
fundamental quantity of a natural population of animals
and can be calculated from the number of deaths in the
population over time. Unfortanately, in most cases,
neither the time of death of an individual nor the number
of deaths over time can be observed. Consequently, it can
only be estimated from indirect information.

Many intraspecific and several interspecific models are
available for this purpose. Interspecific models represent
the instantancous tate of natural mortality of an animat
population as a function of its surrogates and provides a
useful mears for its calculation, especially in the absence
of detailed intraspecific data (Ghsumi 1979; Gunderson
1980; Pauly 1980; Hoenig 1983; Gunderson and Dygert
1988; jensen 1996; Brey and Gage, 1997). In this paper, I
derive a new set of inferspecific models, demonstrate
their relationships with existing ones, and fit them into
data from three groups of animals.

1.2 Model for F{a, )+ M{a, )

LetN{a,1)20,0<a,Sa <o, (<4< ¢ < oo, denote the
number of animals of age o at time ¢ in a natural
population, with an average age at birth a,” and reference
time /. The change in N(a, ) in a time interval of length
At i assumed to be proportional to M{a, #), suck that
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where F{a,1) 20 and M(a,1) 2 0 are, respectively, the
instantancous rate of fishing and natural mortalitics of
animals of age @ at time 7, The instantaneous rate of
fishing mortality F (g, ) is included here to cater for
human expleited populations; F{a, 1)=0 for unexploited
popalations. Finally, notice that although Ag = Ar or

da ' . . . da
= = 1 for many fisheries applications, Ag # As or -1, a8

when fish age ¢ is measured in years and time ¢ in
months. Expansion of ¥{g + Ag, 1+ Af) in the
nzighbourhood of (g, 1) as
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and passing to the imit Ar — 0 give

m Nlo + A+ &3 -N(a,1) (s, 0)da | dN{a,l)

= ich ¥
Al!iﬂl) “ =7 T which ieads to
dN(a,1)da dN(a.1) _
@ wm g - Wlan+ManNa,i)
from which

(2) Fla,n+Ma.n=

1 a{a,da 3N{a,n
N{a,r)[ da 4t ot }
It can be proved (Appendix 1) that, at temporal
equilibrium, under the assumption of the most stable age
distribution, and if < = 1, equation 2 becomes

1 N@fda 1 1
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where & = A{¢}, re-defined from A,(f) in Appendix A, and
= (1) are, respectively, the "equilibrial” age and mean
age of an equilibrial population. These assumplions are
not as restrictive as they seem. For practical purposes,
they are made implicitly in almost all measurements of
#{(a, 1), many other types of data, and many biological
models.

Now, both A and j can be expressed in easily measurable
quantities of an animal individual, including its age,
length and mass. To do so, let an arbitrary measurable
quantity S{a} be given, as a function of age a, by

4 Slay=gla) or

(5 a=g7(Sa)

where g7(S(a)) is the inverse function (assumed 1o exist)
of g(a). Substitution of equation 5 for @ = A into equation
3 yields the general model for calculating the value of
Fa, 1)+ M(a,?) from values of its surrogales

1
i) Fla, +Ma, )= =
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from which age-, length- and mass-based models result
trivially,

1.3 Age-based models

An age-based quantity T (e.g., age at maturity, longevity
or observed maximum age) of a population of animals
can be assumed, 1o the firs{ approximation, to be in direct



proportion {0 its "equilibrial” age b or mean age p of its
equilibrial population, ie., S(A) = T, or

7y SQ)=T=04

with proportionality constant o Substitution of equation
7 into equation 3 yields

8 Fla,ny+Ma.n=oT

where ¢t is the parameler 10 be estimated. In using an
age-based model, it is important o chooss an age-based
quantity, such that o is constant across all species of
interest,

Notice that equation 8 is equivalent in form to Ohsumi’s
{1979, p.A01, lines 10-19Y (T =7, Fle, 1) =0, M{a.0)= M
and o = log(a)}, to Hopnig's (1983} equation 2
(a=—loglk), Z =Fla, D+ M{a,yand T =1,), and to
Jensen’s {1996) eguation 7 {F{z, =0, =165 and

T =x,). Their equations were, however, obtained on
different grounds. Ohsemi (1979} defined the longevity
of a population as the age o which oaly one individual is
observed to survive, This definition gives an
underestimate of longevity, for that individial may well
live for some time after observation. Similarly, Hoenig
{1983) defined i as the age 1o which an arbitrarily small
proportion of a stock survive. Such arbitrariness seems 10
have left something to be desired. Finally, Jensen's
(1996) equation 5 and its resuliing equations assume that
fish of a stock mature when thelr fecundity function f{a)
af age a takes ifs maximum value., Alternatively, one can
maximize their seproductive cutput in their life history

§ fla)da to yield an average age at matunity g, = g,

Thus, animals should mature as early as possible to
maximize their reproductive cutput in their lives,

1.4 Length-based models

To relate the "equilibrial” age A and mean age  of an
equilibrial population 0 a length-based quantity, consider
the length of its individuals af age a L{g}. Specifically,
will now consider the mest commonly used von
Bertalanffy, logistic and Gomperiz growth equations,
grhich, in a differential equation, are given respectively

¥
L=K(@_-L) O0<K, 0<L<L_, 0<L<KL,

L=KL(~LIL) ﬁzx,Ongﬂw,asisime, and

L=KLlg(l/L) 0sK, 0sL<L, 0<i ggmm,

with von Bertalanfly, logistic or Gompertz parameiers
{K,L.). Mote that ¥ and L have exacty the same

meaning in those equations: X is the growth rate of an

individual animal; L is its asymptotic size. Solution of

these equations, each as an initial valoe problem with

La) |, . .= Llay), yields, respectively (Xiao 1996),

Lay=L_~L ~Liae =

Lilaal

La)= (t25)

Llagy+ .. —Ligile
e4[r—ma]

Ligy=L JL{ayL.} .

it should be stressed here that L{a,) is defined a5 the

fength of an individual at age 4,7 g, can be any age of that

~E{t—ag)
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individual right from its genesis 1o iis death, and L{g,) its
comresponding length. These equations can be rewritien

as
1 (L.-L
(9.1) a=ao"émg Z——%)’
1, (L@l ~L@)]
92) a=a-log MJ e
1 [ egJL(@)
(9.3) a=a,-7log m}

Substitution of equations $.1-9.3 for g = . into equation 3
vields, respectively

(105 Fla.n+Ma, o=
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All growth parameters and variables are pow in equations
10.1-19.3. But, what is to be estimated from the
{multispecific) data? A parameter must be invariant, at
least approximately, across all species of interest. Both
L(}) and g, vary across all species and hence are not
appropriate parameters, However, the logarithms of the
relative gquantities and K a, in these equations vary much
lgss in exient across all species, or a group of species.
They are therefore assumed, to the first approximation, {0
be a composite parameter, in which case equations
£0.1-10.3 all bacome
(1) Fla,H+Ma,n=Kif
but with parameter

L—L{A)
B=Ka,~log W__mel,(a(,}]’

Ligg L. —L{(A)]
B—KGBWIOE(‘_—L(M =Ll and

log(LJL(A)
5"{"“_1"3[ logC /(@) |
In using one of the length-based models, one needs to
choose a length-based quantity L(a), a reference length
L{ay), and a reference age a,, such that § is constant

across all species concemed, Clearly, equation 1 has the
same functional form as Jensen’s {1996) equation 8,
which was, however, derived under a restrictive
assumption {see above).

1.5 Mass-based models through length

(10.2y  Fla,n)+ Mg, l)=

To relate the "equilibrial” age A and mean age pof an
equilibrial animal population to a mass-based quantity
through a length-based guantity, one only needs to
replace L{A) in equation [ I with s associated
mass-based quantity, For exampie, et the generat
allomelric equation

(12 S{@)=c’+a’L{a) (Huxiey 1972)or

(13)  L@)=(2=]"

represent the relationship between the mass of an animal
5{z) and its length L{a} at age . with allomeiric



parameters a >0, #>0 and ¢ '<0. Substitution of equation
13 for ¢ = A into equation 11 yields
{14y Fla, ) +Mo, =Ky
with pa:&met;er
- 7B
v=&g,—log %:LMTM:.E]
L.—L{ay

Spg-e Y|
y=F&a,—log L{%}[L“_(T}J} and
LA L.~ Liay)]

v=Ka,—log ioiﬂ‘(f%)'—_c,)yn

log(L./L{ao)) |
Similarly, models aliemative to Gunderson’s (1980) and
Gunderson and Dygert’s {1588} models can be readily
derived for predicting the instanianeous rate of natural
mortality of animals from their gonadosomatic index,
i}eca;gse their gonadosomatic index is a function of their
ength.

1.6 Data and analysis

Use of eguation 8 to estimate o requiress data on Fia, ),
M{a,t)and T; use of equation 11 to estimate f requires
data on #{a, 1), M{a,) and K. However, estimates of
F(a,?) are ussally not very reliable; M{a, ) is usually
substantially pverestimated. The problem with Flg, ) can
be eliminated or reduced by using data from unexploited
or lightly exploited populations. Uniortunately, almost ail
estimates of M {z, ¢) come from heavily fished
populations,

Three sets of data from three groups of animals are
analysed. Since reliable estimates of F(q, ¢) are not
readity available, in this analysis, they ame either assumed
0 be zero or estimated as a parameter common o all
species concerned, Thus, fitting of equation 8 w0
Ohsumi’s {1979} data on the instantaneous rate of
mortality M{a, !} of cetaceans as 3 function of their
fishing mortality (g, 7} and cbserved maximum age ¥,
under the assumption that the errors in M{a, 1) are
independent, identical normal variates, yields

Fla, =-0.0062 (:0.0063) v, 0=5.1144 (£0.3693),

¥, =611.2678, P=0.0001, ’=0.9863, n=19. The
relatively high estimate of the standard error of F(a, 1)
indicates that, for this set of data, F{a, ) can be set to
zero, 5o, fining of equation 8 to the same data on the
instantaneous rate of mortality (g, 1) of cetaceans as a
function of their observed maximum age 7', under the
assumptions that F{a, $)=0 and the ervors in M{a,?) are
independent, identical normal variates, yields a=4.7725
(+0.1365), F, ;5=1222.0446, P=0.0001, r*=0.9855, n=19.
Notice that, in both analyses, the cbserved maximum age
of a cetacean popuolation is about five times as high as the
mean age of ail individuals in the population,

Fitting of equation 11 &0 Guaderson and Dygent’s (1588)
data on the instantanecus rate of mortality A (g, ¢) of fish
as a function of their fishing mortality £ (a, 1) and growth
rate K, under the assumption that the errors in M{a, ) are
independent, identical normal variates, yields

Fla, r=0.0652 (+0.1246) -yr, ;’mi.%ﬁ (10.4453},

F, 1s=5.700, P=0.0281, r=0.2405, n=20. Again, the
relatively high estimate of the standard error of #(g, 1)
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indicates that, for this set of daia, F{g, 1) can be set to
zero. Again, fitting of equation 11 to these data on the
instantaneous rate of mortality M (g, 1) of fishasa
function of growth rate K, under the assumptions that
F{a, =0 and the errors in M{a, ;) are independent,

identical normal variates, yields =1.2718 (+0.1944),
F, ,;=42.8242, P=0.0001, =0.6927, n=20,

Fitting of equation 11 to Brey and Gage’s (1997) datz on
the instantaneous rate of mortality M{a, ) of fishasa
function of their fishing moriality F(a, 1) and growth rate
K, under the assumption that the errors in M{z, 1) are
independent, identical normal variates, yields

Fla, 1=-0.1077 (£0.1251) -yr*, 1=2.5709 (20.1629),

F,5=249.2049, P=0.0001, r=0.7570, n=82. Similarly,
fitting of equation 11 to these data on the instantaneous
rate of mortality #{(a, ¢ of fish as 2 functon of growth
rate X, under the assumptions that F (g, ¢ )=0 and the
errors in M{a, I)Aare independent, identical normal

variates, yields 3=2.4825 (+0.1262), F, ,=386.6960,
P=0.0001, r=0.8268, n=82.

1.7 Discussion

This work demonstrates that the instaniancous rate of
natural mortality of animals in a natural population can
be derived as a function of one or more of its surrcgaies,
thereby providing age-, length- and mass-based models,
or models based on other biclogically meaningful
quantities for its estimation. Although intended mainly
for fishery applications, these models also apply to a
great variety of animals.

‘The instanianeous rate of natural mortality of an animal
popuiation is one of the most difficult and clusive
guantities to estimate. In fact, estimates are often
substantially positively biased. Like previons models,
those developed above require that uncertainties in
F{a,t)+M(a,t)be negligible to avoid propagation io
parameters.

Finaily, some age-based models may be better than
iength- or mass-based ones, because certain age-based
quantities are more reliably measured. Also, the growth
rates of length- or mass-based quantities may have
different interpretations and hence can be as elusive ag
& (a,r) itself. That is probably why equation 11 was not
fitted to Gunderson and Dygert’s {1988) data and Brey
and Gage’s (1997) data very well.
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Appendix A Derivation of equation 3

At temporal equilibrivm, 18, —”—%?53 = {3, equation 2
becomes

1 aWN{g,tyda
{(AY  Fla,ty+Mia. )= Nan a &
There are an nfinite aumber of ways for allocating a iotal
of N(¢) individuals at time 7 of a population at temporal
equilibrium over the {continuous) age interval [, £l
How can then Nia, 1) be determined uniguely as a
function of age «? The most probable distribution of this
infinitum must be the most stable in the absence of large
environmental disturbances. This assumption is valid for
many specics of large sizes, al least approximately and in
the short-term. Under this assumption, Nz, 1) asa
function of age a at time 1 can be found, as a simple
variation probiem, by maximizing the entropy of ihe
distribution function

8
@2 - [ pla,iogpla.)da
under the constraings that

B B
1= jp{a,a‘}dd ang u{f)= f&p(m&‘}d&
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where p(a,f)=N{a, 1 yN{t}. These constraints are, of
course, justified mathematically (Evens 1978). To solve
this variation problem, let

1
H =—pla,ylog{pla, ) +A{)pla. t)—map(a, 1

where A(#)s are the Lagrange muitipliers to be
determined from the constraints. Mow, differentiating
with respect to p{a, ) and letting

5o =~llog(p(a, ) + 11+ Adlt) ;=0 yield

a3 plan=e"TM.

Fquation A3 does correspond to the maximum entropy of
maximun vaiue of equation A2 of p{r VA0 + 1 -3,
for aj % =~1pla,1) <0. Substitution of equation A3

into the constraint 1 = ?p(a, Hda gives

L+ 4

- 1-55 - -
1=l ptanda=te” g =he ™ e N1 e O]

o o

from which

(A%) pla,n= ek,

PWOTH oy

Applying the constraint (/)= ? apla,lida on equation

o

Ad gives

iy = T apla, e = j dmewmmmdﬂ —Mm); iiﬁ:ﬁ:%dw
from which

) B2 1) wo-angn ggash, with

P = e

ot M) — (B A e N
ey = RO

Since pla, 1} = N{a, 1 )iM{t},

N(!} (ﬁ"’ %1(3) _1-1(3)) en{awcnl(;)
MY E-

(B (1}

(A8 Nia= wsash with

o Af) — (B+ At )e

| Bk

Wiy =

Differentialing N{a, ) with respect to g yields
Wa,t) 1 NOEG+MO-W) woane_ 1
% G MOB-@ e @

- A
1 aN@n_ 1
N{a,i) @8a M)

MNow, let us see what A,(¢) means from
-uﬂl(r}

(A7)

(AZ)

]
w1 (B Ryl
- B~ a0

2

LB o e, M) = ) — o i

§ — oo and o= 0, L,(0) = (5. S0, () is indecd a

measure of an animal’s age, with an approximate value of

uit)y— oor uir)! Therefore,

49y - 1 BN(a,r)daz H da= i a’azs 1 da
Na.1) oz & MDd wh-cla wd’

If2 =1, ie., an individual’s age changes at the same rate

as time, equation AG becomes
(A1D) 1 oNag,tyda 1 i 1

N@.1) da & MO pO-o i




